小毛驴

Adventure may hurt you, but monotony will kill you.

0%

UTF-8编码的中文字符串拆分成单字、获取UTF-8字符串的字符个数的代码及原理

字符编码简介

1. ASCII码

在计算机内部,所有的信息最终都表示为一个二进制的字符串。每一个二进制位(bit)有0和1两种状态,因此八个二进制位就可以组合出256种状态,这被称为一个字节(byte)。也就是说,一个字节一共可以用来表示256种不同的状态,每一个状态对应一个符号,就是256个符号,从0000000到11111111。

上个世纪60年代,美国制定了一套字符编码,对英语字符与二进制位之间的关系,做了统一规定。这被称为ASCII码,一直沿用至今。
ASCII码一共规定了128个字符的编码,比如空格“SPACE”是32(二进制00100000),大写的字母A是65(二进制01000001)。这128个符号(包括32个不能打印出来的控制符号),只占用了一个字节的后面7位,最前面的1位统一规定为0。

2. Unicode

英语用128个符号编码就够了,但是用来表示其他语言,128个符号是不够的。因此,很多欧洲国家发明了很多非ASCII码,同样用一个字节,用最高位为1的区间(既128~255)来扩展原来的ASCII码,其中一种比较有名的就是IBM字符编码。这样一来,这些欧洲国家使用的编码体系,可以表示最多256个符号。但是,这里又出现了新的问题。不同的国家有不同的字母,因此,哪怕它们都使用256个符号的编码方式,代表的字母却不一样。比如,130在法语编码中代表了é,在希伯来语编码中却代表了字母Gimel (ג),在俄语编码中又会代表另一个符号。但是不管怎样,所有这些编码方式中,0—127表示的符号是一样的,不一样的只是128—255的这一段。

至于亚洲国家的文字,使用的符号就更多了,汉字就多达10万左右。一个字节只能表示256种符号,肯定是不够的,就必须使用多个字节表达一个符号。比如,简体中文常见的编码方式是GB2312,使用两个字节表示一个汉字,所以理论上最多可以表示256x256=65536个符号。

世界上存在着多种编码方式,同一个二进制数字可以被解释成不同的符号。因此,要想打开一个文本文件,就必须知道它的编码方式,否则用错误的编码方式解读,就会出现乱码。为什么电子邮件常常出现乱码?就是因为发信人和收信人使用的编码方式不一样。
可以想象,如果有一种编码,将世界上所有的符号都纳入其中。每一个符号都给予一个独一无二的编码,那么乱码问题就会消失。这就是Unicode,就像它的名字都表示的,这是一种所有符号的编码。

Unicode当然是一个很大的集合,现在的规模可以容纳100多万个符号。每个符号的编码都不一样。需要注意的是,Unicode只是一个符号集,它只规定了符号的二进制代码,却没有规定这个二进制代码应该如何存储。

3. UTF-8

互联网的普及,强烈要求出现一种统一的编码方式。UTF-8就是在互联网上使用最广的一种unicode的实现方式。其他实现方式还包括UTF-16和UTF-32,不过在互联网上基本不用。重复一遍,这里的关系是,UTF-8是Unicode的实现方式之一。

UTF-8最大的一个特点,就是它是一种变长的编码方式。它可以使用1~6个字节表示一个符号,根据不同的符号而变化字节长度。

UTF-8的编码规则很简单,只有二条:

  1. 对于单字节的符号,字节的第一位设为0,后面7位为这个符号的unicode码。因此对于英语字母,UTF-8编码和ASCII码是相同的。
  2. 对于n字节的符号(n>1),第一个字节的前n位都设为1,第n+1位设为0,后面字节的前两位一律设为10。剩下的没有提及的二进制位,全部为这个符号的unicode码。

如表:

  • 1字节 0xxxxxxx
  • 2字节 110xxxxx 10xxxxxx
  • 3字节 1110xxxx 10xxxxxx 10xxxxxx
  • 4字节 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx
  • 5字节 111110xx 10xxxxxx 10xxxxxx 10xxxxxx 10xxxxxx
  • 6字节 1111110x 10xxxxxx 10xxxxxx 10xxxxxx 10xxxxxx 10xxxxxx

因此UTF-8中可以用来表示字符编码的实际位数最多有31位,即上表中x所表示的位。除去那些控制位(每字节开头的10等),这些x表示的位与UNICODE编码是一一对应的,位高低顺序也相同。

实际将UNICODE转换为UTF-8编码时应先去除高位0,然后根据所剩编码的位数决定所需最小的UTF-8编码位数。

因此那些基本ASCII字符集中的字符(UNICODE兼容ASCII)只需要一个字节的UTF-8编码(7个二进制位)便可以表示。
根据此规则,可以很方便的把UTF-8编码的字符串拆分成单字集合,代码如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
size_t utf8_to_charset(const std::string &input, std::set<std::string> &output) {
std::string ch;
for (size_t i = 0, len = 0; i != input.length(); i += len) {
unsigned char byte = (unsigned)input[i];
if (byte >= 0xFC) // lenght 6
len = 6;
else if (byte >= 0xF8)
len = 5;
else if (byte >= 0xF0)
len = 4;
else if (byte >= 0xE0)
len = 3;
else if (byte >= 0xC0)
len = 2;
else
len = 1;
ch = input.substr(i, len);
output.insert(ch);
}
return output.size();
}

这里我把字符串转换为单字的集合(set)是因为应用场景的需要,如果需要保持单字在字符串中的位置,可以很方便的用vector来替换set。

下面是获取UTF-8字符串的字符个数(注意,不是字符串长度哦)的代码:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
size_t get_utf8_length(const std::string &input) {
size_t length = 0;
for (size_t i = 0, len = 0; i != input.length(); i += len) {
unsigned char byte = input[i];
if (byte >= 0xFC) // lenght 6
len = 6;
else if (byte >= 0xF8)
len = 5;
else if (byte >= 0xF0)
len = 4;
else if (byte >= 0xE0)
len = 3;
else if (byte >= 0xC0)
len = 2;
else
len = 1;
length ++;
}
return length;
}